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Abstract. An analysis is presented to study the effects of transpiration on free convection in an annulus between
concentric porous spheres. A regular perturbation technique is applied to solve the steady-state Navier-Stokes
equations of motion and the energy equation, whereby the stream-function and temperature are expanded in the
form of power series in terms of the Rayleigh number Ra, and injection/suction Reynolds number Re. The
analytical solution is valid for small values of Ra and Re, and all values of the Prandtl number Pr. A finite-difference
solution of the governing steady-state equations of motion and energy is also provided. The range of validity of the
analytical solution is determined by comparison with the numerical solution. Plots of the flow patterns, velocity
distributions, temperature profiles, local and overall heat transfer rates are presented for Pr = 0.7 and different
values of Re, Ra, and the radius ratio A. Results are shown over a range of values of Ra and Re such that the effects
of mixed convection in the annulus can be clearly observed.

1. Introduction

Flow and heat transfer next to porous boundaries is of practical significance in many areas of
engineering. Examples include applications in filtration, gaseous diffusion, lubrication, and
oil processing and recovery. Fluid injection or suction through permeable boundaries is an
effective method of controlling heat transfer in channels and enclosures. Heat transfer in
spherical enclosures has been extensively investigated due to its relevance in nuclear reactor
engineering, and spherical fluid storage systems. In this study, the effects of transpiration on
natural convection in an annulus between concentric porous spheres are analyzed. The
interactions between the radial flow-field (due to injection/suction at the porous spherical
walls), and free convection flow (created by the temperature difference between the porous
spheres) are studied due to their importance in the design of spherical fluid storage systems.
In these applications, transpiration cooling is used to regulate the rate of heat transfer.

Free convection in an annulus between concentric non-porous spheres has been investi-
gated by many researchers, and only studies with relevance to this investigation are reported
here. Mack and Hardee [1] developed a perturbation solution whereby they expanded the
stream-function and temperature in the form of power series in terms of the Rayleigh
number Ra. Singh and Chen [2] extended the study to higher values of the Rayleigh number
by using a series solution in terms of Legendre polynomials and Gegenbauer functions.
Numerical solutions to this problem have been obtained by Astill et al. [3], Caltagirone et al.
[4], Ingham [5], and more recently by Garg [6]. In these studies, finite-difference techniques
were utilized to solve the unsteady equations of motion and energy, and the final steady-state
results were presented for large values of the Rayleigh number. Experimental investigations
of free convection in a spherical annulus have been conducted by Bishop et al. [7], Scanlan
et al. [8], and Yin et al. [9]. Their results include flow patterns, temperature profiles, and
heat transfer correlations over a wide range of Rayleigh numbers, and for different values of
the Prandtl number Pr, and radius ratio A.
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Heat transfer about a rotating porous sphere in an infinite medium and with injection/
suction at the sphere's boundary has been analyzed in conjunction with fluid flow studies by
Lien et al. [10], and more recently by Hatzikonstantinou [11]. In both cases, finite-difference
schemes were used to solve the boundary layer equations, whereby Lien et al. [10] studied
the steady laminar mixed free-forced convection about a rotating porous sphere, and
Hatzikonstantinou [11] analyzed the unsteady laminar mixed convection about a rotating
porous sphere. Studies of flow in an annulus between rotating porous spheres and with
injection/suction at the spherical walls have been conducted by Gulwadi et al. [12]. They
employed a perturbation technique to solve the Navier-Stokes equations of motion and also
used a finite-difference solution to validate their analytical results.

The effects of transpiration on free convection on a vertical porous plate and on a porous
cone have been analyzed by several researchers [13-18]. However, a review of the literature
reveals that there have been no theoretical or experimental studies of the effects of
transpiration on free convection in an annulus between concentric porous spheres. In this
study, an analytical solution of the steady-state Navier-Stokes equations of motion and the
energy equation is obtained by employing a regular perturbation technique. Solutions for the
stream-function and temperature are obtained in the form of power series expansions in
terms of the Rayleigh number Ra, and injection/suction Reynolds number Re. The
analytical solution is valid for small values of Ra and Re, and all values of the Prandtl
number Pr. A numerical solution of the steady-state Navier-Stokes equations of motion and
the energy equation is obtained by employing a finite-difference scheme. The range of
validity of the analytical solution is determined by comparison with the numerical solution.
Results for the flow patterns, velocity distributions, temperature profiles, local and overall
heat transfer rates are presented for Pr = 0.7 and various values of the Rayleigh number Ra,
injection/suction Reynolds number Re, and radius ratio A.

2. Basic equations and their solutions

The laminar axially-symmetric motion of an incompressible Newtonian fluid in an annulus
between concentric porous spheres is considered (Fig. 1). The inner porous sphere of radius

R, is maintained at a uniform temperature T1, while the outer porous sphere of radius R2 is
at a uniform temperature T2. Fluid can be uniformly injected or sucked at the porous
spherical walls, and the rate of injection or suction is based on the uniform radial velocity
component V at the inner porous boundary. The spheres are stationary and a uniform
gravitational field acts vertically downward parallel to the fixed axis of the porous spheres.
The geometry of the annulus is characterized by the radius ratio A= RIR2 ; and the
spherical coordinates used are the meridional angle 0, azimuthal angle b, and the radial
coordinate r, where r = rlR,. All terms denoted by a bar represent dimensional quantities.

The temperature difference between the inner and outer porous spheres gives rise to a free
convection flow pattern in the annulus. The parameter governing the buoyancy-induced flow
is given by the Rayleigh number Ra = g/R3(T1 - T2)/ii6; where f/, v, and c are the thermal
expansion coefficient, kinematic viscosity, and thermal diffusivity of the fluid, respectively.
The rate of injection or suction at the spherical porous walls is represented by the
injection/suction Reynolds number Re = Vw,R /. In this study, positive values of Re are
referred to as 'injection Reynolds numbers' which indicate injection at the inner sphere with
suction at the outer, while negative values of Re are referred to as 'suction Reynolds
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Fig. 1. Notation for flow in the spherical annulus.

numbers' and they imply the opposite. The Prandtl number defined as Pr = Pvi/ represents
the ratio of momentum diffusivity to thermal diffusivity, and is used to characterize the fluid
in the annulus.

The dimensionless radial and meridional velocity components are expressed as V, = VrR Iv
and Vo = VR,IV, respectively. By defining a dimensionless stream-function 6i = CIRca, such
that

1 aq, 1 a4,
VI 2 and V(1)(Pr)r sin ' (Pr)r sin r ' (1)

the equation of continuity is satisfied. The definition of i given by equation (1) makes it
possible to obtain a solution valid for all values of Pr.

All fluid properties are assumed constant except for the density which is modeled based on
the Boussinesq approximation. Additionally, viscous dissipation terms are also neglected in
the energy equation. By introducing a dimensionless temperature difference T = (T- T2 )I
(T. - T2), and by using the definition of ¢i given in equation (1), the steady-state Navier-
Stokes equation of motion and the energy equation are

sin0[d , 0( a 1/ D 2 [ T T] (2)
(Pr) O r2 sin2 +(Ra) sin rsinO +cos -- (2)

and
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V 2 T- 1 aq aT a a , (3)
r2 sinO '80 Or Or o 0/

where:

a2 1 2 cot a

O2 2
-r2 r2 r2 r2 r a

2 2 2 1 82 cot 0±

O8r2 + r r 2 r 22 'r
and

D
4 D 2

(D
2

) 

The boundary conditions on the stream-function and temperature T are

C a,(4.1)

aO r (1/A)=o (4.2)

al 0) a 1/
0 (r , ) = O (4.3)(4.3)

d (r, O°) = r (r, ) = (44)

T(1, 0) = 1, T(1/A, 0) = 0, (4.5)

and

aT aT
o (r, 0) (r, rr) =0 (4.6)

A regular perturbation technique is employed to solve the governing equations for fluid
flow and energy given by equations (2) and (3), subject to the boundary conditions shown in
equations (4.1-4.6). The stream-function ¢i and temperature T are expressed in the form of
power series expansions in terms of Ra and Re as

P=(-cos )RePr + , iJRe)Rai; i=1, 2,3, ., j=0,1,2,. .. (5)

and

T=m ( TmnRen)Ram; m=0,1,2, ... , n=0,1,2,.... (6)
m= nO

where the first term in the expression for ir represents the radial source flow, and the other
coefficients ij and Tm,n are functions of r, 0, A, and Pr only.

For the purposes of this study, the series expansions for ¢q and T are truncated such that
the approximate solutions for the stream-function and temperature are given by I
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4I = (-cos O )Re Pr + ([i,1] + [q,/1 ]Re + [, 2]Re2)(Ra)

+( + [ip21 Re)(Ra2 )+ ([2,0] + []Re)(Ra 3) (7)

and

T= ([To,o] + [To, 1]Re + [To, 2 Re2 + [To,3]Re3 + [To,4 ]Re4 )

+ ([Tl,o] + [T, 1]Re + [T, 2]Re2)(Ra) + ([T 2,O] + [T2,,]Re)(Ra 2 ). (8)

Substituting the expressions for 6I and T from equations (7) and (8) into equations (2) and
(3), and equating coefficients of the same combination of products of powers in Ra and Re,
we get a system of partial differential equations for the determination of ¢jij and T,,,,. They
are

V2 Too = 0, (9.1)

= (Pr) aTo,o (9.2)
r 2 Or

V_2 (Pr) aTO,
VT, 2 = 2ar (9.3)

V2To3 =(Pr) aTo,2
TO, r 2 r (9.4)

V2To, 4 = ( r (9.5)
r 2 Or

D4 ,O 0= -r sin 2 0 aTr (9.6)

D4¢1 a = sin2 ' 2 aT0 
_D_4__ si sin 2r sin (9.7)

D , 1=in D r 2 s i sin2 Or'

a / 2 2 a 0 2 (9l),1
D4 sl, 2= sin0 - rsin20 (9.8)

1 a r2 2sin a 0 ar 

Or r

V2 TI'O = 2 1 aqg aT0 0o (9.9)
r sin 0 0 Or

V Tl = 2s [(Pr) sin0 aT ' + a+Tl,o aT,+ a+ O , aTO o (9.o0)
r sin 0 s-r O + 00 -r - +

1'T,~ F~[(PB aT,, l'°lp aT°'2 ap 11 aT°'1 aql'2 aT' 1r 2 sin 0 [(Pr) sin0 OaT + a Or + 0 aO + aO ar ' (9. 1)

=-sin0 1 o r a or ao or ao] (9.12)

D 02,0 (P) 0 Or r2 sin20 r sin 0 +sin0 cos0 ' ] (9.12)
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4 sin I (P 2) ) a ,o a (D 2
0,)

2 2ar(2 0)+ ao ar rzsin2)D I(2, = PrP) sin 0 ar ,/+ (0 Or r sin2

+p,1 a ( D 2
q ' o 2 aTII aT1.1

a+ -r r2sin2OJ rsin0 r +sin0 cos0 o ] ' (9.13)

v2T 1 [alO aT, all aTo aaT l2, 0 aTO,2 1

T2 r2 sin0 L aO ar or da + aO r ' (9.14)

V2T r =21 [(Pr) sin0 aT2, 0 + a 1,o aTI, at4l,0 T,1
r

2 sin 0 r 0 Or Or ao

+ l 1 a aTI0 l aT,o + aq2,0 aTo, + a 2 , aT(9.15)
a0 dr dr d de dr O dr 1 (9.15)

and

sin 0 [el, aO D2 r2,0 0 a+2,0 a (D
2

1l).O

D" 3,0 ( Pr)L 0 r r
2 sin20 0a Or r2 sin20 /

aq,1O a D 2q2,o r) 2 aT 2 ,0 aT 2 0

ar O0 r2 sin2JJ r sin0 dr + sin 0 cos ] - (9.16)

The boundary conditions on ii and Tn, are as follows:

04i aap
qdi, i(1, ) = q,,j (1/A, ) = for all i, j (10.1)(1,0)= - '(1/A,0)=0 for all i,j, (10.1)

___ alp..

r, 0) (r, ) = 0 for all i,j, (10.3)

dr (r, 0) = a (r, 7) = 0 for all i, j, (10.4)

To,0 (1, 0) = 1, T,n(1, 0) = 0 for all other m,n, (10.5)

Tm,(1/A,) = 0 for all m, n, (10.6)

and

aTm,n T

O0 (r, ) 0 (r, 7T)=0 for all m,n . (10.7)

The solution for the leading term, To,0 , in the expansion for T is expressed as

Too =r A~ +-7 ' (11.1)

where:
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-A 1
A (1-A)' and A2

and it provides the temperature distribution for pure conduction. By substituting for T0, 0
from equation (11.1) into the right hand side of equation (9.2), we can solve for To,, whose
form is given by

To1= [ +A 4 + (Pr ) (11.2)

where:

-1 -A (1+ A)
A3= A and A =2(1 -A)' 4 2(1-A)' 2(1 - A)

In a similar manner it may be shown that

T0 ,2 = [fi(r, A)](Pr)2 , (11.3)

T0 ,3 = [f2(r, A)](Pr)3 , (11.4)

To,4 = [f3 (r, A)](Pr)4 , (11.5)

,10 = [f4 (r, A) sin20] , (11.6)

41, = [f5 (r, A) sin20](Pr) + [f6 (r, A) sin20] , (11.7)

4I1,2 = [f7 (r, A) sin2 0](Pr)2 + [f8(r, A) sin2 0](Pr) + [f9(r, A) sin28] , (11.8)

T1 0 = [flo(r, A) cos 0] , (11.9)

T1,1 = [fl(r, A) cos O](Pr) + [f12(r, A) cos 8], (11.10)

T1 ,2 = [f13(r, A) cos o](pr)2 + [f1 4(r, A) cos o](Pr) + [fi5(r, A) cos 0], (11.11)

'P2,0 = [f16(r, A) sin20 cos 0] + [f17(r, A) sin20 cos ] (Pr) (11.12)

q2,1 = [fi 8(r, A) sin20 cos O](Pr) + [fl9(r, A) sin20 cos 0]

+ [f20 (r, A) sin20 cos 0] (11.13)
(Pr)

T2,0 = [f21(r, A)(1 - 3 cos 2 0) + f2 2(r, A)] + [f23(r, A)(1 - 3 cos 2 0)] (11.14)
(Pr) (

T2,1 = [f24(r, A)(1 - 3 COS2
0) +f2 5 (r, A)](Pr) + [f2 6 (r, A)(1 - 3 cos 20) +f 27(r, A)]

+ [f2 8 (r, A)(1-3 cos20)] (Pr) (11.15)
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and

3 ,0 = [f2 9(r, A)(5 sin2 0 cos 20 - sin 2 ) + f30 (r, A) sin28]

+ [f3 1(r, A)(5 sin2 0 cos 20 - sin20) +f 32(r, A) sin 2 0] (Pr)
(Pr)

+ [f33 (r, A)(5 sin2 0 cos20 - sin2 0) +f 34 (r, A) sin20] (pr2 (11.16)

Every function fz(r, A), 1 - z - 34, consists of a summation of terms of the form r(ln r)Y ,
where -6 < x - 9 and 0 < y - 2. The coefficients of these terms are functions of the radius
ratio A only. The expressions for f are lengthy and are omitted here to conserve space;
details may be found in the studies by Gulwadi [19].

The term T0, 0 from equation (11.1) represents the contribution to heat transfer due to
pure conduction in the absence of any fluid motion, while the terms in equations (11.2-11.5)
show the contribution to heat transfer by pure forced convection due to the injection/suction
of fluid through the porous boundaries.

The coefficients of powers in Ra only, in equations (7) and (8), whose solutions are
presented in equations (11.6), (11.9), (11.12), (11.14), and (11.16) represent the case of free
convection (Re = 0). The remaining terms in equations (7) and (8) whose solutions are
shown in equations (11.7), (11.8), (11.10), (11.11), (11.13) and (11.15) denote the
interaction between free and forced convection.

The range of values of Ra and Re, for which the perturbation solution is accurate is
determined by comparison with the numerical solution of the governing equations for fluid
flow and energy. The numerical solution is obtained by employing a finite-difference
technique to solve equations (2) and (3) subject to the boundary conditions given in
equations (4.1-4.6). Using second-order finite-difference formulae to substitute for the
derivatives of the dependent variables in the region 1 r - 1/A, 0 - 0 - rr, we obtain a set of
implicit, non-linear algebraic, finite-difference equations. The resulting set of non-linear
algebraic equations is then solved iteratively by using the Newton-Raphson method.

3. Results and discussions

Flow patterns in the meridional plane for Ra = 500, Pr =0.7, and A = 0.5, and with
increasing injection Reynolds numbers Re, are shown in Fig. 2. From Fig. 2 it is observed
that in the case of pure free convection (Re = 0), the flow pattern consists of a clockwise
rotating eddy created by the density gradient due to the temperature difference between the
porous spheres (the inner being at a higher temperature than the outer). With increasing
injection Reynolds numbers the eddy progressively decreases in size in the direction of the
lower pole ( = 180°), until it disappears and the streamlines become more radial in nature.
Flow patterns for increasing suction at the inner boundary for Ra = 500, Pr = 0.7, and
A = 0.5 are presented in Fig. 3. For increasing magnitudes of suction Reynolds numbers the
eddy decreases in size in the direction of the upper pole ( = 0°), where it eventually
disappears.

Variations in the radial velocity V, as a function of the dimensionless radial coordinate
R, = (- R/)I(R 2 - R) are presented in Fig. 4 at 0 = 180° for Ra = 500, Pr = 0.7, A = 0.5,
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b)
a)

d)
c)

Fig. 2. Streamlines for Ra = 500, Pr = 0.7 and A = 0.5 when a) Re = 0, b) Re = 1, c) Re = 3, and d) Re = 5.

and increasing values of injection Reynolds numbers. From Fig. 4 it is seen that, for
relatively low values of injection Reynolds numbers, two stagnation points exist on the
streamlines at 0 = 180 °, which indicate the presence of the eddy shown in Fig. 2. The
distance between the stagnation points decreases with increasing injection, signifying a
decrease in the size of the eddy.

Distributions of the temperature T as a function of the dimensionless radial coordinate Rr,
are shown in Fig. 5 at 0 = 900 for Ra = 500, Pr = 0.7, A = 0.5, and various values of
injection/suction Reynolds numbers Re. Figure 5 shows an increase in temperature with
increasing injection Reynolds numbers, and a decrease with increasing magnitudes of suction
Reynolds numbers. It is also observed that injection at the inner sphere results in a decrease
in the radial gradient of temperature at the inner porous wall and an increase at the outer;
while suction at the inner sphere results in an opposite effect.

Heat transfer at the porous boundaries is analyzed by studying the local and overall heat
transfer rates. By defining a dimensionless radial heat flux q = iR lk(T, - T2); where k is
the thermal conductivity, the local heat transfer rates at the inner and outer porous walls are
given by
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b)
a)

c)

Fig. 3. Streamlines for Ra = 500, Pr = 0.7 and A = 0.5 when a) Re = -1, b) Re = -3, and c) Re = -5.

(q)r= = k(r )= ( )=
and

(12.1)

(12.2)k( 1 /A r=1 

Substituting for the temperature from equation (11.1) into equations (12.1) and (12.2), the
heat flux due to pure conduction at the inner and outer walls is

1
(qc)r= = 1 (13.1)

and
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V,

R,

Fig. 4. Plots of radial velocity V, vs. R, at 0 = 1800 for Ra = 500,
numbers.

T

Fig. 5. Plots of temperature T vs. R, at 0 = 90°

Reynolds numbers.

Pr = 0.7, A = 0.5, and various injection Reynolds

Rr

for Ra = 500, Pr = 0.7, A = 0.5, and various injection/suction
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(13.2)
A)2

(qc)r=l/Z (1 -A) '

Combining equations (12.1), (12.2), (13.1), and (13.2), the ratio of the local radial heat flux
to the radial heat flux due to pure conduction qqc, at the inner and outer spheres, is
expressed as

(14.1)

and

(14.2)
q ) (1 - A) T
qc /r=lA

q
2 = - A2(-) r l/A

Figure 6 shows the variations of the local heat transfer rates at the inner and outer porous
spheres as a function of 0 for Ra = 500, Pr = 0.7, A = 0.5, and increasing values of the
injection Reynolds number. In the case of pure free convection (Re = 0), the local heat
transfer rates at the inner sphere above the equator, and at the outer sphere below the
equator, are lower than those values for pure conduction. Elsewhere, on the inner and outer
spheres the local heat transfer rates are higher than those due to pure conduction. These
results are in agreement with those obtained by Hardee [20]. With increasing injection at the

00

Fig. 6. Local heat transfer rates at the inner and outer porous spheres vs. for Ra = 500, Pr = 0.7, A = 0.5, and
various injection Reynolds numbers.

Q) r= 1( rr=l 
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inner sphere, the local heat transfer rates at the inner sphere decrease while they increase at
the outer sphere. For values of Re = 3 and 5, it is seen from Fig. 6 that the local heat transfer
rates throughout the inner porous surface are lower than those values for pure conduction,
while throughout the outer porous surface the local heat transfer rates are above those due
to conduction.

By defining a dimensionless overall heat transfer rate Q = Q/4trRk(T, - T 2),

(4 k( - T 2))ro= - ' [r2 aT] sinO dO (15.1)
4,7TRAT, I - T) 2 

Q 1 [ 2 aT] sin (15.2)
(Q)r=l/A (4TrRlk(T - T2))r=l/A 2o [r- ar]r=l/A (15.2)

Substituting equation (11.1) into equations (15.1) and (15.2), the overall heat transfer rates
at the inner and outer spheres due to pure conduction are expressed as

1
(Qc)r=l = (QC)r=l/A = (1 - A) (16)

As a result, by combining equations (15.1), (15.2), and (16), the ratio (QIQc) evaluated at
the inner and outer spheres are given by

= l- 2 Jo [r0 n r 1 sin0 dO, (17.1)r:, = L, 2 r r

and

= Q2 (1 - A) r2 aT] sin 0 dO . (17.2)
Q l/ ,= = 2 r2 dr =I/k

Using the analytical solution for T, the expressions for Q, and Q2 are

Q = (1 + [N1]Re Pr + [N2]Re2 Pr2 + [N3 ]Re4 Pr4 ) + ([N4] + [N5]Re Pr + [N6]Re)(Ra2),

(18.1)

and

Q2 = (1 - [N 1 ]Re Pr + [N2]Re2 Pr2 + [N3]Re4 Pr4 ) + ([N4] + [Ns]Re Pr + [N6]Re)(Ra 2 ) .

(18.2)

The coefficients in equations (18.1) and (18.2) are functions of the radius ratio A only, and
are presented in tabular form in Table 1.

Figure 7 shows the variations of overall heat transfer rates at the inner and outer porous
spheres for different values of injection and suction Reynolds numbers, at Ra = 500,
Pr = 0.7, and A = 0.5. From Fig. 7 it is seen that for increasing injection at the inner sphere
(with suction at the outer), radial convective transfer of energy decreases the overall heat
transfer rate at the inner porous sphere and increases it at the outer; while increasing suction
at the inner sphere (with injection at the outer) results in an opposite effect. It is also
observed that small rates of injection or suction can have a considerable effect on the overall
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Table 1. Coefficients for overall heat transfer rates at the porous spheres

A N N2 N3 N4 5s N6

0.1 -0.4500 6.75 x 10-2 -9.11 x 10-4 2.97 x 10 - 2 1.72 x 10- 2 -2.29 x 10-3

0.2 -0.4000 5.33 x 10 2 -5.69 x 10- 4 5.74 x 10
- 4 2.21 x 10- 4 -3.63 x 10- 5

0.3 -0.3500 4.08 x 10- 2 -3.33 x 10- 4 2.77 x 10-5 7.21 x 10- 6 -1.31 x 10- 6

0.4 -0.3000 3.00 x 10 - 2 -1.80 X 10- 4 1.78 X 10-6 3.07 x 10- 7 -5.93 x 10 - 8

0.5 -0.2500 2.08 x 10-2 -8.68 x 10- 5 1.19 X 10 - 7 1.30 x 10- 8 -2.60 x 10- 9

0.6 -0.2000 1.33 x 10-2 -3.56 x 10- 5 6.74 x 10- 9 4.39 x 10-1 ° -8.98 x 10- 1 1

0.7 -0.1500 7.50 x 10
- 3 -1.13 x 10- 5 2.59 x 10-'0 8.85 x 10 - 12 -1.83 x 10 12

0.8 -0.1000 3.33 x 10- 3 -2.22 x 10- 6 4.25 x 10 12 6.09 x 10
- ' 4 -1.12 x 10

-
14

0.9 -0.0500 8.33 x 10- 4 -1.39 x 10- ' 7.42 x 10- '5 2.55 x 10-1' 5.37 x 10- 17

Re
Fig. 7. Overall heat transfer rates at the inner and outer
increasing magnitudes of injection/suction Reynolds number

porous spheres for Ra = 500, Pr = 0.7, A = 0.5, and

heat transfer rates at the porous walls. As an example, for Ra = 500, Pr = 0.7, and A = 0.5,
the overall heat transfer rate at the outer sphere increases by 60% while it decreases by 42%
at the inner sphere, when the injection Reynolds number Re is increased from a value of 0 to
3.

For large rates of injection or suction at the porous walls, the effects of free convection are
negligible when compared to forced convection, with the temperature and velocity fields
being dependent only on the radial coordinate r. In the case of forced convection between
concentric porous spheres where the effects of free convection have been neglected, the
following expression for T has been provided by Bird et al. [21],
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-Re Prlr -Re Pr A

e -e

Substituting for T from equation (19) into equations (17.1) and (17.2), we get

(1 - A)Re Pr
eRe Pr(l-A) _ 1

and

(1 - A)Re Pr
2 1 - e Re Pr(1-A)

497

(19)

(20.1)

(20.2)

For increasing injection at the inner porous sphere (with suction at the outer), we observe
from equations (20.1) and (20.2) that, as Re->m; Q,-0 asymptotically, while Q2 --> (1-

A)Re Pr asymptotically. In the case of increasing suction at the inner porous sphere (with
injection at the outer), from equations (20.1) and (20.2), it is noted that as Re-- -- ;

Q2---> 0, while Q ---> (1 - A)Re Pr. The asymptotic behavior of heat transfer results for
increasing injection or suction at the porous spheres can be seen in Fig. 7.

Figure 8 shows the variation of Q, with increasing values of the Rayleigh number for
Pr = 0.7, A = 0.5, and various values of injection/suction Reynolds numbers. From Fig. 8 it
is seen that the effects of free convection increase with increasing values of Ra. However, for
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Fig. 8. Plots of overall heat transfer rate at the inner porous sphere vs. Ra for Pr = 0.7, A = 0.5, and various
injection/suction Reynolds numbers.
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Fig. 9. Plots of overall heat transfer rate at the inner porous sphere vs. 1/A for Ra = 1000, Pr = 0.7, and various
injection/suction Reynolds numbers.

values of Ra - 250, approximately, the effects of free convection are negligible; which is in
agreement with the results of Astill et al. [3] for Re = 0. It is also observed from Fig. 8 that
the analytical and numerical results show good agreement in the range IRel 5 and
Ra - 1000, approximately.

Figure 9 shows the plot of Q with increasing values of 1/A for Pr = 0.7, Ra = 1000, and
various values of injection/suction Reynolds numbers. Comparisons between the analytical
and numerical results, from Fig. 9, indicate that for a value of A = 0.5 there is good
agreement between the two solutions in the range IRel 5, approximately.

4. Conclusions

In this investigation, the effects of transpiration on free convection in an annulus between
concentric porous are studied by employing a regular perturbation technique. Results are
presented over a range of values for the Rayleigh number Ra and injection/suction Reynolds
number Re, where the strength of the radial flow-field is comparable to that of free
convection flow. The stream-line plots and velocity distributions for a constant value of Ra
and increasing injection/suction rates display the transition of flow from a circulatory
flow-pattern for pure free convection (Re = 0) to a radial flow-pattern where the effects of
forced convection are dominant. Heat transfer results at the porous spheres also indicate that
for a given value of Ra and increasing rates of injection/suction, the combined effects of free
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and forced convection are significant over a range of values of Re, beyond which the effects
of free convection are negligible.

Results from a numerical solution of the governing equations for fluid flow and energy
using a finite-difference scheme are also provided in this study. The range of values of Ra
and Re for which the analytical solution is valid is determined by comparison with the
numerical solution.
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